MATH 521A: Abstract Algebra Preparation for Exam 1

- 1. Use induction to prove that $n^3 < n!$ for all $n \ge 6$.
- 2. Let $m \in \mathbb{N}$. Use the division algorithm to prove that there is no integer n with m < n < m + 1.
- 3. Let $a, b, n \in \mathbb{Z}$ with n > 1. Suppose we apply the division algorithm three times to get $a = q_1 n + 1$, $b = q_2 n + r_2$, $ab = q_3 n + r_3$. Prove that $r_2 = r_3$.
- 4. Let S be a set with a well-ordering <, and for each $x \in S$ the proposition P(x) may be true or false. Suppose that $c \in S$ is the smallest counterexample, i.e. P(c) is false, but for all $x \in S$ with x < c, P(x) is true. Suppose that with these hypotheses we are able to derive a contradiction. Prove that P(x) holds for all $x \in S$, using the well-ordering of S.
- 5. Prove that $5|(3^{2n}-2^{2n})$ for all $n \in \mathbb{N}$.
- 6. Use the Euclidean Algorithm to find gcd(1492, 1776) and to express that gcd as a linear combination of 1492, 1776.
- 7. Suppose $a, b, q, r \in \mathbb{Z}$ with b > 0 and a = bq + r. Prove that gcd(a, b) = gcd(b, r).
- 8. Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Suppose a | bc. Prove that $a | \gcd(a, b)c$.
- 9. Let $a, b \in \mathbb{N}$. Suppose that gcd(a, b) = 1. Without using the FTA, prove that $gcd(a^2, b^2) = 1$.
- 10. Express 7, 938, 000 as a product of primes.
- 11. Let p be a positive prime, $n \in \mathbb{Z}$ with n > 1. Use the Fundamental Theorem of Arithmetic to prove that there do not exist $a, b \in \mathbb{N}$ with $a^n = pb^n$. [Note: this proves that $\sqrt[n]{p} \notin \mathbb{Q}$.]
- 12. Let $a, x, y, n \in \mathbb{N}$ with gcd(a, n) = 1. Suppose $ax \equiv ay \pmod{n}$. Prove that $x \equiv y \pmod{n}$.
- 13. Let $a, b, n \in \mathbb{N}$ with gcd(a, n) = 1. Prove that $ax \equiv b \pmod{n}$ has a solution x. Also, prove that any two solutions are congruent modulo n.
- 14. Suppose $a, b, m, n \in \mathbb{N}$ and gcd(m, n) = 1. Prove that the system $\{x \equiv a \pmod{m}, x \equiv b \pmod{n}\}$ has a solution x. Also, prove that any two solutions are congruent modulo mn.
- 15. Prove that any natural number is congruent to its units digit, modulo 10.
- 16. Prove that $n^3 \equiv n \pmod{6}$, for all $n \in \mathbb{N}$.
- 17. Working in \mathbb{Z}_{27} , find the multiplicative inverse of [8], and use this to solve the modular equation [8] \odot [x] = [15].
- 18. Working in \mathbb{Z}_n , prove that the following holds for all a, b, c, d:

$$([a] \oplus [b]) \odot ([c] \oplus [d]) = ([a] \odot [c]) \oplus ([a] \odot [d]) \oplus ([b] \odot [c]) \oplus ([b] \odot [d])$$

- 19. Let $[a] \in \mathbb{Z}_n$. Prove that exactly one of the following holds: (i) [a] = [0]; or (ii) [a] is a unit; or (iii) [a] is a zero divisor.
- 20. Let $n \in \mathbb{Z}$ with n > 1. Prove that n is prime if and only if there are no zero divisors in \mathbb{Z}_n .