MATH 521A: Abstract Algebra

Preparation for Exam 1

1. Use induction to prove that $n^{3}<n$! for all $n \geq 6$.
2. Let $m \in \mathbb{N}$. Use the division algorithm to prove that there is no integer n with $m<n<m+1$.
3. Let $a, b, n \in \mathbb{Z}$ with $n>1$. Suppose we apply the division algorithm three times to get $a=q_{1} n+1$, $b=q_{2} n+r_{2}, a b=q_{3} n+r_{3}$. Prove that $r_{2}=r_{3}$.
4. Let S be a set with a well-ordering $<$, and for each $x \in S$ the proposition $P(x)$ may be true or false. Suppose that $c \in S$ is the smallest counterexample, i.e. $P(c)$ is false, but for all $x \in S$ with $x<c$, $P(x)$ is true. Suppose that with these hypotheses we are able to derive a contradiction. Prove that $P(x)$ holds for all $x \in S$, using the well-ordering of S.
5. Prove that $5 \mid\left(3^{2 n}-2^{2 n}\right)$ for all $n \in \mathbb{N}$.
6. Use the Euclidean Algorithm to find $\operatorname{gcd}(1492,1776)$ and to express that gcd as a linear combination of $1492,1776$.
7. Suppose $a, b, q, r \in \mathbb{Z}$ with $b>0$ and $a=b q+r$. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
8. Let $a, b, c \in \mathbb{Z}$ with $a \neq 0$. Suppose $a \mid b c$. Prove that $a \mid \operatorname{gcd}(a, b) c$.
9. Let $a, b \in \mathbb{N}$. Suppose that $\operatorname{gcd}(a, b)=1$. Without using the FTA, prove that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$.
10. Express $7,938,000$ as a product of primes.
11. Let p be a positive prime, $n \in \mathbb{Z}$ with $n>1$. Use the Fundamental Theorem of Arithmetic to prove that there do not exist $a, b \in \mathbb{N}$ with $a^{n}=p b^{n}$. [Note: this proves that $\sqrt[n]{p} \notin \mathbb{Q}$.]
12. Let $a, x, y, n \in \mathbb{N}$ with $\operatorname{gcd}(a, n)=1$. Suppose $a x \equiv a y(\bmod n)$. Prove that $x \equiv y(\bmod n)$.
13. Let $a, b, n \in \mathbb{N}$ with $\operatorname{gcd}(a, n)=1$. Prove that $a x \equiv b(\bmod n)$ has a solution x. Also, prove that any two solutions are congruent modulo n.
14. Suppose $a, b, m, n \in \mathbb{N}$ and $\operatorname{gcd}(m, n)=1$. Prove that the system $\{x \equiv a(\bmod m), x \equiv b(\bmod n)\}$ has a solution x. Also, prove that any two solutions are congruent modulo $m n$.
15. Prove that any natural number is congruent to its units digit, modulo 10 .
16. Prove that $n^{3} \equiv n(\bmod 6)$, for all $n \in \mathbb{N}$.
17. Working in \mathbb{Z}_{27}, find the multiplicative inverse of [8], and use this to solve the modular equation $[8] \odot[x]=[15]$.
18. Working in \mathbb{Z}_{n}, prove that the following holds for all a, b, c, d :

$$
([a] \oplus[b]) \odot([c] \oplus[d])=([a] \odot[c]) \oplus([a] \odot[d]) \oplus([b] \odot[c]) \oplus([b] \odot[d])
$$

19. Let $[a] \in \mathbb{Z}_{n}$. Prove that exactly one of the following holds:
(i) $[a]=[0]$; or
(ii) $[a]$ is a unit; or
(iii) $[a]$ is a zero divisor.
20. Let $n \in \mathbb{Z}$ with $n>1$. Prove that n is prime if and only if there are no zero divisors in \mathbb{Z}_{n}.
